
comment installer-umami-analytics sur-debian-12
Umami	is	a	very	lightweight,	open-source,	self-hosted	web	analytics	solution.	It	is	a	good	privacy-focused	alternative	to	Google	Analytics	and	other	paid	analytic	solutions.	One	of	the	main	
advantages	of	using	Umami	is	that	it	doesn't	place	any	cookie	on	the	user's	browser,	which	means	you	don't	need	to	put	up	the	annoying	cookie	banner	on	your	website.

In	this	tutorial,	we	will	learn	how	to	install	Umami	analytics	on	a	Debian	12	server	and	use	it	to	track	websites.

Prerequisites
A	server	running	Debian	12.

A	non-root	user	with	sudo	privileges.

A	fully	qualified	domain	name	(FQDN)	like	umami.example.com	pointing	to	the	server.

The	Uncomplicated	Firewall(UFW)	is	enabled	and	running.

Update	everything.

$	sudo	apt	update	&&	sudo	apt	upgrade

Install	essential	packages	that	your	system	needs.	Some	of	these	packages	may	already	be	installed	on	your	system.

$	sudo	apt	install	wget	curl	nano	ufw	software-properties-common	dirmngr	apt-transport-https	gnupg2	ca-certificates	lsb-release	debian-archive-keyring	unzip	-y

Step	1	-	Configure	Firewall
The	first	step	is	to	configure	the	firewall.	Ubuntu	comes	with	ufw	(Uncomplicated	Firewall)	by	default.

Check	if	the	firewall	is	running.

$	sudo	ufw	status

You	should	get	the	following	output.

Status:	inactive

Allow	SSH	port	so	that	the	firewall	doesn't	break	the	current	connection	on	enabling	it.

$	sudo	ufw	allow	OpenSSH

Allow	HTTP	and	HTTPS	ports	as	well.

$	sudo	ufw	allow	http
$	sudo	ufw	allow	https

Enable	the	Firewall

$	sudo	ufw	enable
Command	may	disrupt	existing	ssh	connections.	Proceed	with	operation	(y|n)?	y
Firewall	is	active	and	enabled	on	system	startup

Check	the	status	of	the	firewall	again.

$	sudo	ufw	status

You	should	see	a	similar	output.

Status:	active

To		 		Action		 		From
--		 		------		 		----
OpenSSH		 		ALLOW		 		Anywhere
80/tcp		 		ALLOW		 		Anywhere
443		 		ALLOW		 		Anywhere
OpenSSH	(v6)		 		ALLOW		 		Anywhere	(v6)
80/tcp	(v6)		 		ALLOW		 		Anywhere	(v6)
443	(v6)		 		ALLOW		 		Anywhere	(v6)

Step	2	-	Install	Git
Git	is	needed	to	clone	Umami's	official	repository.	Install	Git.

$	sudo	apt	install	git

Verify	the	installation.

$	git	--version
git	version	2.39.2

Set	initial	configuration	variables.

$	git	config	--global	user.name	"Your	Name"
$	git	config	--global	user.email	"email@example.com"

Step	3	-	Install	Node
Umami	is	a	JavaScript	app	that	runs	on	Nodejs.	To	install	Node,	we	will	use	Nodesource's	installer.	Since	Node	v16.0	is	the	current	stable	version,	we	will	install	that.

Download	and	import	the	Nodesource	GPG	key

$	curl	-fsSL	https://deb.nodesource.com/gpgkey/nodesource-repo.gpg.key	|	sudo	gpg	--dearmor	-o	/usr/share/keyrings/nodesource.gpg

Create	Node	Deb	repository.

$	NODE_MAJOR=18
$	echo	"deb	[signed-by=/usr/share/keyrings/nodesource.gpg]	https://deb.nodesource.com/node_$NODE_MAJOR.x	nodistro	main"	|	sudo	tee	/etc/apt/sources.list.d/nodesource.list

Update	the	Debian	system	package	repository	list.

$	sudo	apt	update

Install	Node.

$	sudo	apt	install	nodejs

Verify	the	Node	installation.

$	node	--version
v18.18.0

Step	4	-	Install	MariaDB	Server
Debian	12	does	not	ship	with	MySQL	by	default	and	they	haven't	released	an	official	package	for	it	yet.	Therefore,	we	will	be	using	MariaDB	for	it.

Debian	12	ships	with	MariaDB	10.11.4	We	will	install	that.	You	can	however	install	the	latest	version	from	the	repository.

$	sudo	apt	install	mariadb-server

Check	the	version	of	MySQL.

$	mysql	--version
mysql		Ver	15.1	Distrib	10.11.4-MariaDB,	for	debian-linux-gnu	(x86_64)	using		EditLine	wrapper

Run	the	MariaDB	secure	install	script.

$	sudo	mariadb-secure-installation

You	will	be	asked	for	the	root	password.	Press	Enter	because	we	haven't	set	any	password	for	it.

NOTE:	RUNNING	ALL	PARTS	OF	THIS	SCRIPT	IS	RECOMMENDED	FOR	ALL	MariaDB
						SERVERS	IN	PRODUCTION	USE!		PLEASE	READ	EACH	STEP	CAREFULLY!

In	order	to	log	into	MariaDB	to	secure	it,	we'll	need	the	current
password	for	the	root	user.	If	you've	just	installed	MariaDB,	and
haven't	set	the	root	password	yet,	you	should	just	press	enter	here.

Enter	current	password	for	root	(enter	for	none):

Next,	you	will	be	asked	if	you	want	to	switch	to	the	Unix	socket	authentication	method.	The	unix_socket	plugin	allows	you	to	use	your	operating	system	credentials	to	connect	to	the	MariaDB
server.	Since	you	already	have	a	protected	root	account,	enter	n	to	proceed.

OK,	successfully	used	password,	moving	on...

Setting	the	root	password	or	using	the	unix_socket	ensures	that	nobody
can	log	into	the	MariaDB	root	user	without	the	proper	authorisation.

You	already	have	your	root	account	protected,	so	you	can	safely	answer	'n'.

Switch	to	unix_socket	authentication	[Y/n]	n

Next,	you	will	be	asked	if	you	want	to	change	your	root	password.	On	Debian	12,	the	root	password	is	tied	closely	to	automated	system	maintenance,	so	it	should	be	left	alone.	Type	n	to	proceed
further.

	...	skipping.

You	already	have	your	root	account	protected,	so	you	can	safely	answer	'n'.

Change	the	root	password?	[Y/n]	n

Next,	you	will	be	asked	certain	questions	to	improve	MariaDB	security.	Type	Y	to	remove	anonymous	users,	disallow	remote	root	logins,	remove	the	test	database,	and	reload	the	privilege
tables.

	...	skipping.

By	default,	a	MariaDB	installation	has	an	anonymous	user,	allowing	anyone
to	log	into	MariaDB	without	having	to	have	a	user	account	created	for
them.		This	is	intended	only	for	testing,	and	to	make	the	installation
go	a	bit	smoother.		You	should	remove	them	before	moving	into	a
production	environment.

Remove	anonymous	users?	[Y/n]	y
	...	Success!

Normally,	root	should	only	be	allowed	to	connect	from	'localhost'.		This
ensures	that	someone	cannot	guess	at	the	root	password	from	the	network.

Disallow	root	login	remotely?	[Y/n]	y
	...	Success!

By	default,	MariaDB	comes	with	a	database	named	'test'	that	anyone	can
access.		This	is	also	intended	only	for	testing,	and	should	be	removed
before	moving	into	a	production	environment.

Remove	test	database	and	access	to	it?	[Y/n]	y
	-	Dropping	test	database...
	...	Success!
	-	Removing	privileges	on	test	database...
	...	Success!

Reloading	the	privilege	tables	will	ensure	that	all	changes	made	so	far
will	take	effect	immediately.

Reload	privilege	tables	now?	[Y/n]	y
	...	Success!

Cleaning	up...

All	done!		If	you've	completed	all	of	the	above	steps,	your	MariaDB
installation	should	now	be	secure.

Thanks	for	using	MariaDB!

You	can	enter	the	MariaDB	shell	by	typing	sudo	mysql	or	sudo	mariadb	on	the	command	line.

Step	5	-	Download	Umami
The	first	step	is	to	install	the	Yarn	package	manager.	We	can	install	it	using	NPM.

$	sudo	npm	install	-g	yarn

Since	Umami	is	a	Node	application	and	doesn't	have	a	public	webroot	directory,	we	don't	need	to	host	it	via	/var/www	directory.

Clone	the	Umami's	GitHub	repository.

$	git	clone	https://github.com/mikecao/umami.git

Switch	to	the	newly	created	directory.

$	cd	umami

Install	the	Umami	modules.

$	yarn	install

Step	6	-	Configure	Umami
Create	MySQL	Credentials	and	populate	the	database

Enter	the	MySQL	shell.	Enter	your	root	password	to	continue.

$	sudo	mysql

Create	umami	user.	Make	sure	the	password	meets	the	requirements	set	before.

mysql>	CREATE	USER	'umamiuser'@'localhost'	IDENTIFIED	BY	'YourPassword';

Create	umami	database.

mysql>	CREATE	DATABASE	umami;

Grant	the	user	privileges	on	the	umami	database.

mysql>	GRANT	ALL	PRIVILEGES	ON	umami.*	TO	'umamiuser'@'localhost';

Since	we	are	not	modifying	the	root	user,	you	should	create	another	SQL	user	for	performing	administrative	tasks	that	employ	password	authentication.	Choose	a	strong	password	for	this	one.

MariaDB>	GRANT	ALL	ON	*.*	TO	'navjot'@'localhost'	IDENTIFIED	BY	'Yourpassword32!'	WITH	GRANT	OPTION;

Flush	privileges.

mysql>	FLUSH	PRIVILEGES;

Exit	the	Shell.

mysql>	exit

Configure	Umami	Environment	Variables

We	need	a	strong	App	secret	for	logging	purposes.	For	this,	we	will	use	the	OpenSSL	command.

$	openssl	rand	30	|	openssl	base64	-A
bu4orqfdlG+Dh3Otau4oWSBbI9kGWSkGfYc/WiH/

Create	a	.env	file	to	store	environment	variables	for	Umami's	installation.

$	touch	.env

Open	the	file	for	editing.

$	nano	.env

Paste	the	following	code	in	it.	You	will	need	to	encode	any	special	characters	in	your	password	for	the	database	URL.	Use	the	meyerweb	encoder	for	it.	In	our	case,	the	#	is	translated	to	%23.	The
database	URL	ends	with	the	database	name	we	need	to	connect	to.	Use	the	app	secret	generated	earlier	for	the	APP_SECRET	variable.	The	DISABLE_TELEMETRY=1	option	disables	sending	anonymous	data
by	the	app	to	Umami's	servers.	The	TRACKER_SCRIPT_NAME	variable	is	useful	to	avoid	getting	your	script	blocked	by	Ad	blockers.	Give	it	a	unique	name	something	that	is	unique	to	your	website.

DATABASE_URL=mysql://umamiuser:YourPassword@localhost:3306/umami
APP_SECRET=bu4orqfdlG+Dh3Otau4oWSBbI9kGWSkGfYc/WiH/
DISABLE_TELEMETRY=1
TRACKER_SCRIPT_NAME=custom

Step	7	-	Running	Umami
Now	that	everything	is	set	up,	build	the	Umami	application.

$	yarn	build

The	next	step	is	to	start	the	application.	We	can	start	the	app	by	using	the	command	yarn	start	but	it	would	mean	that	you	need	to	keep	the	terminal	open	for	Umami	to	run.	Therefore,	we	need	a
way	to	run	Umami	in	the	background.	To	do	this,	we	will	install	PM2	(Advanced	Production	Process	Manager	for	Node).

Install	PM2.

$	sudo	yarn	global	add	pm2

The	global	options	means	we	are	installing	PM2	globally,	and	therefore,	we	need	sudo	privileges	to	run	the	command.

Start	the	Umami	application.

$	pm2	start	yarn	--name	umami	--	start

You	will	get	the	following	output.

[PM2]	Starting	/usr/bin/yarn	in	fork_mode	(1	instance)
[PM2]	Done.
??
?	id	?	name					?	namespace			?	version	?	mode				?	pid						?	uptime	?	?				?	status				?	cpu						?	mem						?	user					?	watching	?
??
?	0		?	umami				?	default					?	N/A					?	fork				?	2020					?	0s					?	0				?	online				?	0%							?	18.8mb			?	navjot			?	disabled	?
??

Save	the	Umami	application	with	PM2	for	further	use.

$	pm2	save
[PM2]	Saving	current	process	list...
[PM2]	Successfully	saved	in	/home/navjot/.pm2/dump.pm2

Umami	will	automatically	restart	if	it	crashes	or	is	killed	but	not	if	the	system	is	rebooted.	We	need	to	create	a	systemd	script	to	ensure	it	restarts	across	system	reboots.	Run	the	following
command	to	generate	a	startup	script.

$	pm2	startup

The	resulting	output	will	give	you	a	command	to	set	PM2	to	run	on	boot.	The	output,	in	your	case,	will	give	you	the	current	username.	Run	the	following	command	to	generate	the	startup	script.

$	sudo	env	PATH=$PATH:/usr/bin	/usr/local/share/.config/yarn/global/node_modules/pm2/bin/pm2	startup	systemd	-u	navjot	--hp	/home/navjot

Step	8	-	Install	Nginx
Debian	12	ships	with	an	older	version	of	Nginx.	To	install	the	latest	version,	you	need	to	download	the	official	Nginx	repository.

Import	Nginx's	signing	key.

$	curl	https://nginx.org/keys/nginx_signing.key	|	gpg	--dearmor	\
				|	sudo	tee	/usr/share/keyrings/nginx-archive-keyring.gpg	>/dev/null

Add	the	repository	for	Nginx's	stable	version.

$	echo	"deb	[signed-by=/usr/share/keyrings/nginx-archive-keyring.gpg]	\
http://nginx.org/packages/debian	`lsb_release	-cs`	nginx"	\
				|	sudo	tee	/etc/apt/sources.list.d/nginx.list

Update	the	system	repositories.

$	sudo	apt	update

Install	Nginx.

$	sudo	apt	install	nginx

Verify	the	installation.	On	Debian	systems,	the	following	command	will	only	work	with	sudo.

$	sudo	nginx	-v
nginx	version:	nginx/1.24.0

Start	Nginx.

$	sudo	systemctl	start	nginx

Check	the	service	status.

$	sudo	systemctl	status	nginx
?	nginx.service	-	nginx	-	high	performance	web	server
					Loaded:	loaded	(/lib/systemd/system/nginx.service;	enabled;	preset:	enabled)
					Active:	active	(running)	since	Tue	2023-10-10	11:19:45	UTC;	9s	ago
							Docs:	https://nginx.org/en/docs/
				Process:	3646	ExecStart=/usr/sbin/nginx	-c	/etc/nginx/nginx.conf	(code=exited,	status=0/SUCCESS)
			Main	PID:	3647	(nginx)
						Tasks:	3	(limit:	4652)
					Memory:	2.4M
								CPU:	8ms
					CGroup:	/system.slice/nginx.service
													??3647	"nginx:	master	process	/usr/sbin/nginx	-c	/etc/nginx/nginx.conf"
													??3648	"nginx:	worker	process"
													??3649	"nginx:	worker	process"

Oct	10	11:19:45	umami	systemd[1]:	Starting	nginx.service	-	nginx	-	high	performance	web	server...
Oct	10	11:19:45	umami	systemd[1]:	Started	nginx.service	-	nginx	-	high	performance	web	server.

Step	9	-	Install	SSL	using	Let's	Encrypt
We	need	to	install	Certbot	to	generate	free	SSL	certificates	offered	by	Let's	Encrypt.

You	can	install	Certbot	using	Debian's	repository	or	grab	the	latest	version	using	the	Snapd	tool.	We	will	be	using	the	Snapd	version.

Debian	12	comes	doesn't	come	with	Snapd	installed.	Install	Snapd	package.

$	sudo	apt	install	snapd

Ensure	that	your	version	of	Snapd	is	up	to	date.

$	sudo	snap	install	core	
$	sudo	snap	refresh	core

Install	Certbot.

$	sudo	snap	install	--classic	certbot

Use	the	following	command	to	ensure	that	the	Certbot	command	can	be	run	by	creating	a	symbolic	link	to	the	/usr/bin	directory.

$	sudo	ln	-s	/snap/bin/certbot	/usr/bin/certbot

Verify	the	installation.

$	certbot	--version
certbot	2.7.0

Generate	the	SSL	certificate.

$	sudo	certbot	certonly	--nginx	--agree-tos	--no-eff-email	--staple-ocsp	--preferred-challenges	http	-m	name@example.com	-d	umami.example.com

The	above	command	will	download	a	certificate	to	the	/etc/letsencrypt/live/umami.example.com	directory	on	your	server.

Generate	a	Diffie-Hellman	group	certificate.

$	sudo	openssl	dhparam	-dsaparam	-out	/etc/ssl/certs/dhparam.pem	4096

Check	the	Certbot	renewal	scheduler	service.

$	sudo	systemctl	list-timers

You	will	find	snap.certbot.renew.service	as	one	of	the	services	scheduled	to	run.

NEXT																								LEFT								LAST																								PASSED							UNIT																									ACTIVATES
.....
Tue	2023-10-10	14:24:00	UTC	1h	55min	left	-																											-												snap.certbot.renew.timer			snap.certbot.renew.service
Wed	2023-10-11	00:00:00	UTC	11h	left						-																											-												dpkg-db-backup.timer							dpkg-db-backup.service
Wed	2023-10-11	00:00:00	UTC	11h	left						Tue	2023-10-10	00:00:04	UTC	12h	ago						exim4-base.timer											exim4-base.service

Do	a	dry	run	of	the	process	to	check	whether	the	SSL	renewal	is	working	fine.

$	sudo	certbot	renew	--dry-run

If	you	see	no	errors,	you	are	all	set.	Your	certificate	will	renew	automatically.

Step	10	-	Configure	Nginx
Create	and	open	the	file	/etc/nginx/conf.d/umami.conf	for	editing.

$	sudo	nano	/etc/nginx/conf.d/umami.conf

Paste	the	following	code	in	it.

server	{
				listen							443	ssl	http2;
				listen							[::]:443	ssl	http2;
				server_name		umami.example.com;

				access_log		/var/log/nginx/umami.access.log;
				error_log			/var/log/nginx/umami.error.log;
				
				#	SSL
				ssl_certificate						/etc/letsencrypt/live/umami.example.com/fullchain.pem;
				ssl_certificate_key		/etc/letsencrypt/live/umami.example.com/privkey.pem;
				ssl_trusted_certificate	/etc/letsencrypt/live/umami.example.com/chain.pem;
				ssl_session_timeout		5m;
				ssl_session_cache	shared:MozSSL:10m;
				ssl_session_tickets	off;
				ssl_protocols	TLSv1.2	TLSv1.3;
				ssl_prefer_server_ciphers	on;
				ssl_ciphers	ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-POLY1305:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384;
				ssl_ecdh_curve	X25519:prime256v1:secp384r1:secp521r1;
				ssl_stapling	on;
				ssl_stapling_verify	on;
				ssl_dhparam	/etc/ssl/certs/dhparam.pem;
				resolver	8.8.8.8;

				location	/	{

						proxy_pass	http://localhost:3000;
						proxy_set_header	X-Real-IP	$remote_addr;
						proxy_set_header	Host	$host;
						proxy_set_header	X-Forwarded-For	$proxy_add_x_forwarded_for;
		}
}
#	enforce	HTTPS
server	{
				listen							80;
				listen							[::]:80;
				server_name		umami.example.com;
				return	301			https://$host$request_uri;
}

Save	the	file	by	pressing	Ctrl	+	X	and	entering	Y	when	prompted	once	finished.

Open	the	file	/etc/nginx/nginx.conf	for	editing.

$	sudo	nano	/etc/nginx/nginx.conf

Add	the	following	line	before	the	line	include	/etc/nginx/conf.d/*.conf;.

server_names_hash_bucket_size		64;

Save	the	file	by	pressing	Ctrl	+	X	and	entering	Y	when	prompted.

Verify	the	Nginx	configuration	file	syntax.

$	sudo	nginx	-t
nginx:	the	configuration	file	/etc/nginx/nginx.conf	syntax	is	ok
nginx:	configuration	file	/etc/nginx/nginx.conf	test	is	successful

Restart	the	Nginx	service	to	enable	the	new	configuration.

$	sudo	systemctl	restart	nginx

Step	11	-	Set	up	a	Site	and	Collect	Statistics
Open	the	URL	https://umami.example.com	in	your	browser,	and	it	will	look	like	the	following.

Umami	generates	a	default	administrator	account	with	the	username	admin	and	password	as	umami	during	the	installation.	Use	these	credentials	to	log	in.

Once	logged	in,	you	will	be	greeted	with	the	following	page.

Visit	the	settings	page	and	click	on	Add	website	to	get	started.

Once	you	have	added	the	site,	click	on	the	Edit	button	and	then	switch	to	the	Tracking	code	tab	to	get	the	code.

Paste	the	code	between	your	header	or	footer	HTML	tags,	and	within	a	few	minutes,	Umami	will	start	getting	data.

Step	12	-	Update	Umami
To	update	Umami,	shift	to	the	Umami	installation	directory.

$	cd	~/umami

Stop	Umami	application.

$	pm2	stop	umami

Install	any	new	or	updated	dependencies.

$	yarn	install

Rebuild	the	Umami	application.

$	yarn	build

Start	Umami	application.

$	pm2	start	umami

Conclusion
This	concludes	our	tutorial	on	installing	and	setting	up	the	Umami	Analytics	tool	on	a	Debian	12	server.	If	you	have	any	questions,	post	them	in	the	comments	below.

